Strona główna
Do góry
Publikacje
O mnie
Kontakt
Konsultacje

 

Rachunek różniczkowy i całkowy

Wydział Mechaniczny - kierunki: 

Mechanika i Budowa Maszyn

Mechatronika

Wykład 15 h, ćwiczenia 15 h

SYLABUS MiBM

SYLABUS Mtr

Zakres materiału kolokwium 1 z zastosowania całek oznaczonych

Termin: 29.11.2019. Czas trwania: 45 minut. Maksimum punktów: 12 (4 punkty za każde zadanie).

Zad. 1. Obliczyć pole obszaru ograniczonego podanymi krzywymi (Lista 1 zad. 4).

Zad. 2. Obliczyć długość podanej krzywej względnie pole powierzchni bocznej podanej bryły obrotowej (Lista 1 zad. 5 lub 7).

Zad. 3. Obliczyć objętość podanej bryły obrotowej (Lista 1 zad. 6).

Listy zadań:

LISTA 1

LISTA 2

LISTA 3

LISTA 4

Przydatne wzory:

Wartości funkcji sinus i cosinus, tabela pochodnych i całek

Działania na pochodnych

Wykresy podstawowych funkcji

Wykresy i własności funkcji elementarnych

Tożsamości trygonometryczne

Tożsamości hiperboliczne

Wykresy i tabelka wartości funkcji sinus i cosinus

Pochodne ważniejszych funkcji

Całki ważniejszych funkcji

Własności całki Riemanna 

Wzory na długości krzywej, pole powierzchni bocznej i objętość bryły obrotowej

Tematyka zajęć:  

 

  1. Całka oznaczona i metody jej obliczania.

  2. Zastosowanie całki oznaczonej w geometrii i mechanice, objętość i pole powierzchni bocznej brył obrotowych.

  3. Informacja o całce niewłaściwej. 

  4. Zbiory na płaszczyźnie i w przestrzeni.

  5. Określenie i dziedzina funkcji wielu zmiennych, wykres funkcji dwóch zmiennych. 

  6. Pochodne cząstkowe, interpretacja geometryczna, równanie płaszczyzny stycznej do wykresu oraz prostej normalnej. 

  7. Różniczka zupełna i jej zastosowania do obliczeń przybliżonych i szacowania błędów.

  8. Gradient, pochodna kierunkowa, pochodne cząstkowe wyższych rzędów. 

  9. Ekstrema funkcji wielu zmiennych, przykłady zagadnień optymalizacyjnych. 

  10. Równania różniczkowe zwyczajne rzędu pierwszego. 

  11. Równanie różniczkowe liniowe o stałych współczynnikach rzędu n jednorodne i niejednorodne.

Oprogamowanie graficzne:

GeoGebra

Desmos

Literatura:

1. Gewert M., Skoczylas Z., Analiza matematyczna 1 i 2, Definicje, twierdzenia, wzory. Seria "Matematyka dla studentów politechnik", Oficyna Wydawnicza GIS 2015, 2016.

2. Gewert M., Skoczylas Z., Analiza matematyczna 1 i 2, Przykłady i zadania. Seria "Matematyka dla studentów politechnik", Oficyna Wydawnicza GIS 2017, 2016.

3. Gewert M., Skoczylas Z., Wstęp do algebry i analizy. Seria "Matematyka dla studentów politechnik", Oficyna Wydawnicza GIS 2014.

4. Gewert M., Skoczylas Z., Równania różniczkowe zwyczajne, Teoria, przykłady, zadania. Seria "Matematyka dla studentów politechnik", Oficyna Wydawnicza GIS 2016.

5. Flisowski A., Grzymkowski R., MATEMATYKA - Przewodnik po wykładach wraz z zadaniami. Wydawnictwo Pracowni Komputerowej Jacka Skalmier 2002.

6. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach, tom I i II.  Wydawnictwo naukowe PWN 2011.

7. Żakowski W., Kołodziej W.: Matematyka. Podręczniki akademickie EIT, cz. I i II. WNT 2000.

8. Stankiewicz W., Zadania z matematyki dla wyższych uczelni technicznych, cz. A i B. Wydawnictwo naukowe PWN 2017.